Optimal control of elliptic equations with positive measures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Equations Involving Measures

3 Semilinear equations with absorption 19 3.1 The Marcinkiewicz spaces approach . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Admissible measures and the ∆2-condition . . . . . . . . . . . . . . . . . . . 26 3.3 The duality method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 Bessel capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.2 Sharp...

متن کامل

construction of vector fields with positive lyapunov exponents

in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...

15 صفحه اول

Annular and sectorial sparsity in optimal control of elliptic equations

In this paper we consider optimal control problems in which a certain L1-type norm of the control appears in the objective. Problems of this type are of interest for at least two reasons. Firstly, the L1 norm of the control is often a natural measure of the control cost. Secondly, this term promotes sparsely supported optimal controls, i.e., controls which are zero on substantial parts of its d...

متن کامل

Optimal Control of Semilinear Elliptic Equations in Measure Spaces

Optimal control problems in measure spaces governed by semilinear elliptic equations are considered. First order optimality conditions are derived and structural properties of their solutions, in particular sparsity, are discussed. Necessary and sufficient second order optimality conditions are obtained as well. On the basis of the sufficient conditions, stability of the solutions is analyzed. ...

متن کامل

Positive Solutions of Quasilinear Elliptic Equations

(1.2) { −∆pu = λa(x)|u|p−2u, u ∈ D 0 (Ω), has the least eigenvalue λ1 > 0 with a positive eigenfunction e1 and λ1 is the only eigenvalue having this property (cf. Proposition 3.1). This gives us a possibility to study the existence of an unbounded branch of positive solutions bifurcating from (λ1, 0). When Ω is bounded, the result is well-known, we refer to the survey article of Amann [2] and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations

سال: 2016

ISSN: 1292-8119,1262-3377

DOI: 10.1051/cocv/2015046